skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "S. S. Karunakaran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. S. S. Karunakaran; A. Higgins (Ed.)
  2. S. S. Karunakaran; A. Higgins (Ed.)
  3. S. S. Karunakaran; A. Higgins (Ed.)
    We present the results of a classroom teaching experiment for a recently designed unit for the Inquiry-Oriented Linear Algebra (IOLA) curriculum. The new unit addresses orthogonality and least squares using Realistic Mathematics Education design principles with the intent to implement the new unit in an IOI (Inquiry-Oriented Instruction)-style classroom. We present an analysis of students’ written responses to characterize how they thought about the notion of shortest distance, travel vectors, orthogonality, and dot product in the “Meeting Gauss” context. 
    more » « less
  4. S. S. Karunakaran; A. Higgins (Ed.)
    This study presents linear algebra students’ vector conception found in the least-squares solution context through an IOLA (Inquiry-Oriented Linear Algebra) classroom teaching experiment. Students’ reflection writings after the classroom teaching experiment are the data source. Using the previously found student conception of vector in another study as a basic framing, the data have been analyzed to investigate how students used the word vector and what they referred to. A framework is developed as a tool to be useful in a wide range of describing student conception of a vector emphasizing their natural way of thinking of a vector and on their use of the vector. 
    more » « less
  5. S. S. Karunakaran; A. Higgins (Ed.)
    Systems of equations is a core topic in linear algebra courses. Solving systems with no or infinitely many solutions tends to be less intuitive for students. In this study, we examined two students’ reasoning about the relationship between the structure of a system of linear equations and its solution set, particularly when creating systems with a certain number of equations and unknowns. Using data from a paired teaching experiment, we found that both students favored the notion of parallel planes, both geometrically and numerically, in the case of a system having no solution or infinitely many solutions. We also found that algebraic or numerical approaches were used as the main way of developing systems with a unique solution, especially in systems with more than two equations and two unknowns. In particular, one student gravitated toward geometric approaches and the other toward algebraic and numerical approaches. 
    more » « less
  6. S. S. Karunakaran; A. Higgins (Ed.)
    Vector spaces are often taught with an axiomatic focus, but this has been shown to rely on knowledge many students have not yet developed. In this paper, we examine two students’ conceptual resources for reasoning about null spaces drawing on data from a paired teaching experiment. The task sequence is set in the context of a school with one directional hallways. Students’ informal reasoning about paths that leave the room populations unchanged supported more formal reasoning about null spaces. We found that one student used context-based resources (such as ‘loops’ in hallway) to reason about null spaces, while the other student drew largely on previously formalized mathematical resources (e.g. free variables, linear dependence). The use of formal resources sometimes required recontextualization, which may function to constrain student sense-making or afford opportunities for broadening students’ formal prior knowledge. 
    more » « less
  7. S. S. Karunakaran; A. Higgins (Ed.)
    Social Network Analysis is a method to analyze individuals’ social accessibility and power. We adapt it to change inequitable issues in STEM postsecondary education. Equity issues in mathematics education, such as underrepresented women and racial disparities, are prevalent. With the social capital perspective, we investigate the demographic characteristics of influential students and their social networks. Seventeen participants are undergraduate students in an inquiry-oriented linear algebra course. The number of nominations on discussion boards as “Shout-out” is data to measure influence and map the social network. By analyzing data with UCINET, we found that (1) the most influential students are non-White males and the principal components of the network are male-dominant, and (2) there is a female-dominant small cluster and female students have reciprocal networks. This study suggests further discussions of (1) how discussion boards position students with the social capital perspective and (2) intersectionality, especially for women of color. 
    more » « less
  8. S. S. Karunakaran, & A. (Ed.)
    In this paper, we introduce an RME-based (Freudenthal, 1991) task sequence intended to support the guided reinvention of the linear algebra topic of vector spaces. We also share the results of a paired teaching experiment (Steffe & Thompson, 2000) with two students. The results show how students can leverage their work in the problem context to develop more general notions of Null Space. This work informs further revisions to the task statements for using these materials in a whole-class setting. 
    more » « less
  9. S. S. Karunakaran, & A. (Ed.)
    Systems of linear equations (SLE) comprise a fundamental concept in linear algebra, but there is little research regarding the teaching and learning of SLE, especially students' conceptions of solutions. In this study, we examine students’ understanding of solutions to SLE in the context of an experientially real task sequence. We interviewed two undergraduate mathematics majors, who were also preservice teachers, to see how they thought about solutions to SLE in R3, especially linear systems with multiple solutions. We found participants used their knowledge of SLE in R2 to think about systems in higher dimensions, sometimes ran into algebraic complications, and initially did not find the third dimension intuitive to think about geometrically. Our findings highlight students’ ways of reasoning with infinite solution sets, such as moving toward the notion of parametrization. 
    more » « less
  10. S. S. Karunakaran, & A. (Ed.)
    Systems of linear equations (SLE) comprise a fundamental concept in linear algebra, but there is little research regarding the teaching and learning of SLE, especially students' conceptions of solutions. In this study, we examine students’ understanding of solutions to SLE in the context of an experientially real task sequence. We interviewed two undergraduate mathematics majors, who were also preservice teachers, to see how they thought about solutions to SLE in ℝ3 , especially linear systems with multiple solutions. We found participants used their knowledge of SLE in ℝ2 to think about systems in higher dimensions, sometimes ran into algebraic complications, and initially did not find the third dimension intuitive to think about geometrically. Our findings highlight students’ ways of reasoning with infinite solution sets, such as moving toward the notion of parametrization. 
    more » « less